If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1400000=-4p^2+8000p
We move all terms to the left:
1400000-(-4p^2+8000p)=0
We get rid of parentheses
4p^2-8000p+1400000=0
a = 4; b = -8000; c = +1400000;
Δ = b2-4ac
Δ = -80002-4·4·1400000
Δ = 41600000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41600000}=\sqrt{640000*65}=\sqrt{640000}*\sqrt{65}=800\sqrt{65}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8000)-800\sqrt{65}}{2*4}=\frac{8000-800\sqrt{65}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8000)+800\sqrt{65}}{2*4}=\frac{8000+800\sqrt{65}}{8} $
| 36-2x=-×+2 | | 2(3x+1)=8x | | 1400000=-4p^2+8000 | | 5x+2-3/2x-2=0 | | 3=9−2g | | 6-(8p+7)=8p-9 | | 7x+2(5x-16)=59 | | 3x-35=9x159 | | 2x/5+7=1 | | 4+10x+8=3+2x+9 | | 4.20=0.75(4.2)+u | | 5×y=y-48 | | 3x+-4=2(x+8) | | 162/13=52/t | | 3x+6-x=6+3x-6 | | (2x+18)=3x | | 5x+5x=2 | | -3u+2=-10u-30 | | 9m-9=0 | | z/4=5/12 | | 2=-32+p | | 1x+8=5x+4 | | 266=20-v | | 3u2+12=0 | | 112=-4x | | 243-v=16 | | 11/12=12/p | | 213-v=282 | | X^2-2x+5=10 | | 11/12 =12/p | | x/3-3.1=7.9 | | p+5=9(9p-9)+7(8-10p) |